sábado, 19 de abril de 2008

METODO DE ASIGNACION ( HUNGARO )

Un problema de asignación es un problema de transporte balanceado, en el cual todas las ofertas y todas las demandas son iguales a uno. Se puede resolver eficientemente un problema de asignación m x m mediante el método Húngaro:
Paso 1.- Empiece por encontrar el elemento mas pequeño en cada renglón de la matriz de costos. Construya una nueva matriz, al restar de cada costo, el costo mínimo de su renglón. Encuentre, para esta nueva matriz el costo mínimo en cada columna. Construya una nueva matriz ( la matriz de costos reducidos ) al restar de cada costo el costo mínimo de su columna.

Paso 2.- Dibuje el mínimo numero de líneas (horizontales o verticales ) que se necesitan para cubrir todos los ceros en la matriz de costos reducidos. Si se requieren m líneas para cubrir todos los ceros, siga con el paso 3.

Paso 3.- Encuentre el menor elemento no cero (llame su valor k en la matriz de costos reducidos, que no esta cubiertos por las líneas dibujadas en el paso 2. Ahora reste k de cada elemento no cubierto de la matriz de costos reducidos y sume k a cada elemento de la matriz de costos reducidos cubierto por dos líneas. Regrese al paso 2.

Un problema de asignación es un problema de transporte balanceado en el que todas las ofertas y demandas son iguales a 1; así se caracteriza por el conocimiento del costo de asignación de cada punto de oferta a cada punto de demanda. La matriz de costos del problema de asignación se llama: matriz de costos.

Como todas las ofertas y demandas para el problema de asignación son números enteros, todas las variables en la solución óptima deben ser valores enteros.

EJEMPLOS DE PROBLEMAS DE ASIGNACION

1. Una empresa ha contratado a 4 individuos para 4 trabajos, los 4 individuos y 4 trabajos pueden mostrarse en una tabla que indique las clasificaciones obtenidas, analizando al individuo para cada trabajo. Los renglones se refieren a los hombres, mientras que las columnas se refieren a los trabajos; el problema consiste en maximizar las calificaciones para asignar los 4 trabajos.
Se supone que las calificaciones de un individuo es directamente proporcional a la ganancia que obtendría la compañía si ese individuo se encargara del trabajo.

2. Otro problema que utiliza la misma estructura del modelo de transporte, es la asignación de camiones para reducir al mínimo los costos de un problema de asignación.

3. Una empresa cubre el territorio nacional con dos camiones especialmente equipados para funcionar en condiciones climatológicas específicas. La empresa ha dividido en cinco regiones geográficas. Se compra el camión A y se modifica para que funcione eficientemente en las regiones uno y dos, y para que funcione bastante bien en las regiones tres y cuatro. El mismo camión no funciona bien en la región cinco. Los gastos de gasolina, mantenimiento y otros costos directos de operación, serían mínimos en las regiones uno y dos, promedio en las regiones tres y cuatro, y altos en la región cinco. Se tiene esa misma información con respecto a los demás camiones de la compañía, o sea, los tipos B, C y D.

METODO DE APROXIMACION DE VOGEL ( VAM )

Este metodo es heuristico y suele producir una mejor solucion inicial que los dos metodos antes descritos. De hecho, VAM suele producir una solucion inicial optima, o proxima al nivel optimo.
Los pasos del procedimiento son los siguientes:

Paso1: Evaluese una penalizacion para cada renglon restando el menor elemento del costo del renglon del elemento de costo menor siguiente en el mismo renglon.

Paso2: Identifiqueze el renglon o columna con la mayor penalizacion, rompiendo empates en forma arbitraria. Asignese el valor mayor posible a la variable con el costo mas bajo del renglon o columna seleccionado. Ajustese la oferta y la demanda y tachese el renglon o columna satisfecho. Si un renglon o columna se satisfacen al mismo tiempo, solo uno de ellos se tacha y al renglon restante se le asigna una oferta cero.Cualquier renglon o columna con oferta o demanda cero no debe utilizarce para calcular penalizaciones futuras.

Paso 3:
a.-si solo hay un renglon o columna sin tachar, detengase.
b.-si solo hay un renglon conoferta positiva sin tachar, determinense las variables basicas del renglon a travez del metodo del costo minimo.
c.-si todos los renglones y columnas sin tachar tienen oferta o demanda cero asignadas, determinese las variables basicas cero a travez del metodo del costo minimo. Detengase.
d.-de lo contrario, calculense las penalizaciones de las renglones y columnas no tachados y despues dirijase al paso 2.




PR = Penalización de Renglón
PC = Penalización de Columna

MODELO DEL COSTO MINIMO

Asignese el mas grande valor posible a la variable con el menor costo unitario de toda la tabla. Tachese el renglon o columna satisfecho.Despues de ajustar la oferta y la demanda de todos los renglones y columnas no tachados, repitase el proceso asignando el valor mas grande posible a la variable con el costo unitario no tachado mas pequeño. El procedimiento esta completo cuando queda exactamente un rebglon o bien una columna sin tachar.

METODO DE MULTIPLICADORES

EXPLICACION DEL METODO DE MULPIPLICADORES CON UN METODO SIMPLEX

La relecion que existe entre el metodo multiplicadores y el metodo simplex se puede establecer demostrando que cpq según se define, es igual directamente a los coeficientes de la funcion objetivo de la tabla simplex asociada con la iteracion actual.

Para mostrar como se obtiene el problema dual para el metodo de transporte, considerese primero el caso especial de ,=2 y n=3 que se indica en la tabla 6-15. Sean las variables duales u1 y u2 para las restricciones de las fuentes y v1,v2, y v3 para las restricciones de los destinos. El problema dual se convierte en:

Maximizar w = (a1u1+a2u2) + (b1v1+b2v2+b3v3)

Sujeto a:

U1 +v1 <= c11
U1 +v2 <=c12
U1 +v3 <=c13
U2+v1 <=c21
U2+v1 <=c22
U2 +v3 <=c23
Ui, U2, v1, v2, v3, irrestrictas

El problema dual correspondiente esta dado por:

Maximizar w = åm i-1 a1 u1 + ån bi vj

sujeto a:

ui + vj <=cij para todas las i y j
ui y vj irrestrictas

La evaluacion de las variables no basicas se determinan mediante la sustitucion de los valores actuales de las variables duales en las restricciones duales y despues tomando la diferencia entre sus miembros primero y segundo. Los valores de las variables duales se pueden determinar observando que las restricciones deuales correspondientes a una variable basica se deben satisfacer como ecuaciones escritas.
En realidad en la iteracion optima los multiplicadores producen los valores duales optimos directamente.

En lo antes expuesto se asigna un valor arbitrario a una de las variables duales que indica que los multiplicadores simplex asociados con una solucion basica dada no son unicos. Esto puede parecer inconsistente con los resultados donde los multiplicadores deben ser unicos.

METODO DE LA "M"

Este método empieza con la PL en la forma estándar Para cualquier ecuación i que no tiene una holgura, aumentamos una variable artificial R. Entonces esta variable se convierte en parte de la solución básica inicial. Debido a que es una variable artificial al modelo de PL se le asigna una penalidad en la función objetivo, para obligarlas aun nivel cero en una iteración del algoritmo SIMPLEX

Debido a que M es un valor positivo suficientemente grande, la variable R1 se penaliza en la función objetivo utilizando —MR, en el caso de la maximización, y +RM, en la minimización. Debido a esta penalidad El proceso de optimización lógicamente tratara de impulsar R1, al nivel cero
Minimice Z= 4X1 + X2







La forma estándar se obtiene restando un superávit X3 en la segunda restricción y añadiendo una holgura X en la tercera restricción. Por tanto obtenemos

Minimice Z= 4X1 +X2



La primera y segunda ecuación no tiene variables que desempeñen el papel de holguras. Por consiguiente, utilizamos las variables R1 y R2 en estas dos ecuaciones y las penalizamos en la función objetivo con MR1 + MR2. La PL resultante se da como
Minimice Z=4X1 +X2 + MR1 + MR2








En el modelo modificado, ahora podemos utilizar R1, R2 y X4 como la solución básica factible inicial como lo demuestra la siguiente tabla simplex



Antes de proceder con los cálculos del método simplex, necesitamos hacer que el renglón -Z sea consistente con el resto de la tabla simplex. De manera específica, el valor de z asociado con la solución básica inicial R1 = 5, R2 6, y X4 = 4 debe ser 3M + 6M + O = 9M en vez de O, como se muestra en el lado derecho del renglón -Z. Esta inconsistencia se debe al hecho de que R, y R2 tienen coeficientes no cero (-M, -M) en e! renglón -Z Estas inconsistencias se eliminan sustituyendo R1 y R2 en el renglón -Z, utilizando las ecuaciones apropiadas de restricción.

En particular, observe los elementos “1” realzados en el renglón -R1 y en el renglón -R2. Multiplicando cada uno de los renglones –R1 y de los renglones -R2 por M y añadiendo la suma al renglón -Z, efectivamente se sustituirá a R1 y R2 en el renglón objetivo. Podemos resumir este paso como

Nuevo renglón Z= Antiguo renglón Z + M x (Renglón R1) + M x (Renglón R2)
Esto se aplica como




Por lo tanto la nueva tabla simplex se convierte en